
On Time Versus Space

JOHN HOPCROFT"

Cornell Umversity, Ithaca, New York

WOLFGANG PAUL

Cornell Umverslty, Ithaca, New York

AND

LESLIE VALIANT

Umversity of Leeds, Leeds, Great Braam

ARSTRAcr. It is shown that every deterministic multltape Turlng machine of time complexity t(n) can be
simulated by a deterministic Turlng machine of tape complexity t(n)/log t(n). Consequently, for tape construct-
able t(n), the class of languages recognizable by multltape Turmg machines of time complexity t(n) IS strictly
contained in the class of languages recognized by Turing machines of tape complexity t(n) In particular the
context-sensitive languages cannot be recognized in hnear time by deterministic multltape Turmg machines

KEY WORDS AND PHRASES: T u r m g m a c h i n e s , t i m e c o m p l e x i t y , t a p e c o m p l e x i t y

CR CAr~oams. 5 25

1. Introduction

The main result of this pape r is to set t le m the aff i rmat ive the fundamenta l ques t ion as to
whe the r space is strictly m o r e powerfu l than t ime as a resource for de terminis t ic
mul t i tape Tur ing machines . We estabhsh for all funct ions t(n) that the class of sets
accepted in t ime t(n) is con ta ined with the class of sets accepted m space t(n)/log t(n). This
implies by the s tandard d lagonal iza t ion a rguments [11] that for funct ions t(n) and 6(n)
which are both const ructable on tape t(n) the class of sets accepted in h m e t(n) is p roper ly
con ta ined in the class of sets accepted in space 8(n)t(n)/log t(n) prov ided inf 8(n) ~ ~ .

O n e consequence of the above result is that the context -sens i twe languages cannot be
recognized in l inear t ime on a determinis t ic mul t i tape Tur ing machine . In fact there
exists a determinis t ic context-sensi t ive language which cannot be recognized in t ime
(n log n) /A - l (n) on a de terminis t ic mul t i t ape Tur ing machine , where A - l (n) Is the in-
verse of A c k e r m a n n ' s funct ion.

2. Efficwnt Space Simulation o f Time Bounded Turing Machines

Let DTIME(t(n)) (NTIME(t(n))) be the class of sets accepted by de te rmimst ic (nonde te r -
minist ic) mul t i tape T u r m g machines of t ime complexi ty t(n). Le t DSPACE(s(n))
(NSPACE(s(t i))) be the class of sets accepted by determinis t ic (nondeterminis t ic) multi-
tape Tur ing machines of space complexi ty s(n).

Copyright © 1977, Association for Computing Machinery, Inc. General permission to repubhsh, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is
made to the publication, to its date of issue, and to the fact that repnnting prtvdeges were granted by
permission of the Association for Computing Machinery
This research was supported m part by DAAD (German Academic Exchange Service) Grant NO 430/402/
563/5 and the Office of Naval Research under Grant N-OOO14-67-A-O077-O021
Authors' present addresses" J Hopcroft, Department of Computer Science. Cornell University, Ithaca. NY
14853; W. Paul,'Fakultat Mathematik, Umversltat Blelefeld D-48, Bwlefeld, Germany, L Valiant, University
of Leeds, Leeds, Great Britain.

Journal of the Association for Computing Machinery, Vol 24, No 2, Aprd 1977, pp 332-337

On Ttme Versus Space 333

We present an algorithm for simulating a deterministic multitape Turing machine of
time complexity t by a deterministic Turing machine of space complexity t / log t. For ease
in understanding the construction involved we first present a nondeterministic simula-
tion.

Partition each tape into blocks of size t z/a. Next modify the time bounded Turmg
machine so that it is block respecting; that is, tape heads will cross boundaries between
blocks only at times which are integer multiples of t z/a. The modified Turing machine
must be so constructed so that it runs slower by at most a constant factor c. To do this
block boundaries are marked on the tapes. An additional tape ~s added with one block
marked on it. The head on this new tape simply moves back and forth over the block and
serves as a clock to indicate multiples of t 2/3 units of time. If either head on one of the
original tapes attempts to cross a block boundary at a time other than a multiple of t z~z,
the simulation temporarily halts until the clock tape indicates the next multiple.

A difficulty arises in that a tape head may simply move back and forth between two
adjacent tape cells which are in different blocks. In this case the simulation would be
slower by a factor of t 2ts. This difficulty is overcome as follows. Let

be an inscription of the j th tape of the original Turing machine after mt 213 steps where
I w, I = tz/a- Then the corresponding inscription for the block respecting Turing machine
after cmt 2Is steps is

w1

w~

wl

w2

w~

w~

W3

w~

Wr

where w r stands for w reversed. The extra tracks are used to guarantee that t 2/s moves can
be simulated without crossing a block boundary. After t zja such moves of actual simula-
tion, the next (c - 1)t 2/a moves are used to update the tapes of the block respecting
machine. The details of the simulation and of marking the block boundaries are left to
the reader. (For help, consult the proof of Theorem 10.3 in [7].)

Without loss of generality, let M be a block respecting deterministic k-tape Turing
machine of time complexity t and let w be an input for M. Divide the computation of M
on input w into time segments. Each segment A corresponds to a time period of length
t 2~3. Note that a tape head can cross a boundary only at the end of a segment. Since the
original Turing machine makes at most t moves and there are always t 2t3 moves between
crossings of block boundaries, there are at most t 1/a time segments A.

Let h(i, A) be the position of the tape head on the tth tape of M after time segment A.
Let h(A) = [h(1, A) h(k, A)] and let h = [h(1) h(p/a)]. From the sequence of
head positions h, we construct a directed graph G with a vertex corresponding to each
time segment of the computation. Let v(A) be the vertex corresponding to time segment
A. For each tape i, let A~ be the last time segment prior to A such that the ith head was
scanning the same block during the segment A, as during the segment A. The edges of G
are v(A - 1) --~ v(A) and, for 1 _< i -< k, v(A,) ~ v(A). Because there are only t t/s time
segments A, the above graph has at most t 1/a vertices. To write down a description of the
graph requires space on the order of (k + 1) t ~/a log t since approximately log t bits are
needed to specify each edge.

Let c(i, A) be the content after time segment A of that block on the ith tape of M
scanned by the tape head durmg the time segment A. Let c(A) = [c(1, A), . . . , c(k, A)].
Letf(A) be the initial contents of those blocks which are visited by M for the first time
during the time segment A. With each vertex v(A) in G we can associate the information
c(A) and f(A).

3 3 4 J. HOPCROFT, W. PAUL, AND L. VALIANT

Let q(&) be the state of M after time segment A and let q = [q (1) , . . . , q(t113)]. In order
to determine the outcome of the original computat ion of M, we need only determine the
state q(A) after the final time segment A.

Suppose we have guessed the sequence of head positions h and the sequence of states
q. We want them to simulate M without using too much space and to verify that we
guessed h and q correctly. Because M is deterministic and block respecting, the following
holds for any A:

(2.1) q(A), h(A), and c(A) can be uniquely determined f romq(A - 1), h(A - I) , c(A1),
. . • , c(Ak), and f(A) by direct simulation of t ime segment A. The simulation reqmres
space to store the contents of k blocks or O(kt2/3).

(2.2) To store c(A) requires space 0(kt213).

f(A), q(A - 1), and h(A - 1) can be determined from the guessed sequences q and h, and
the edges into vertex v(A) in the graph G give us the vertices associated with c (A 1) , . . . ,
c(Ak). This suggests several strategies to simulate M. Our strategy will be first to
determine c(1), then c(2), c(3), and so on.

Now observe that in order to carry out the whole simulation we need not keep in
memory the contents of the blocks corresponding to all vertices since we can go back and
reconstruct certain blocks whenever we need them. The question is what is the minimum
number of blocks one must store at any one time in order to carry out the simulation. To
answer this question we study a game on graphs.

Let Gk be the set of all finite directed acydic graphs with indegree at most k. Vertices
with indegree 0 are called input vertices. The game consists in placing pebbles on the
vertices of such a graph G according to the following rules:

(1) A pebble can always be placed on an input vertex.
(2) If all fathers of a vertex v have pebbles, then a pebble can be placed on vertex v.
(3) A pebble can be removed at any time.
The goal of the game is to eventually place a pebble on a particular vertex v,

designated in advance, by a scheme which minimizes the maximum number of pebbles
simultaneously on the graph at any instance of time. Let Pk(n) be the maximum over all
graphs in G k with n vertices of the number of pebbles required to place a pebble on an
arbitrary vertex of such a graph. We will show that for each k, Pk(n) is O(n/log n).

LEMMA I. For each k, Pk(n) is O(n/log n).
PROOF. For convenience let Rk(n) be the minimum number of edges of any graph in

Gk which requires n pebbles. Showing that Rk(n) --> cn log n for some c is equivalent to
proving that Pk(n) JS O(n/ log n).

Let
G = (V, E) be a graph m Gk with Rk(n) edges which requires n pebbles,
V~ = the set of vertices of G to which a pebble can be moved us ingn/2 or fewer pebbles,
V2= V - V ,
E 1 = { (u ~ v)/(u --> v) ~ E, u, v ~ V1},
E2 = {(u --> v)/(u --> v) ~ E, u, v ~ Vz},
G~ = (V~, E~) and Gz = (Vz, Ez).

A = E - (El t.I E2), that is, A is the set of edges from vertices in Va to vertices in V2.
We claim that there exists a vertex in G2 which requires n /2 - k pebbles if the game is

played on G2 only. Otherwise move a pebble to any vertex v of G with less than n pebbles
by the following strategy. If v is in Vi, then only n /2 pebbles are needed. Thus assume v
is in V2. Move a pebble to v in G by using the strategy for G2. Whenever we need to place
a pebble on a vertex w of G2 which in G has a father in V1, move pebbles one at a time to
each father of w in V1. Since w has at most k fathers in V~, at most n /2 + k pebbles are
ever placed on vertices in V~. As soon as a pebble is placed on w, remove all pebbles
from vertices in V~. Hence at mos tn - 1 pebbles are ever used, a contradiction. Thus G2
must have at least Rk(n/2 - k) edges.

Next observe that G~ has a vertex which requires at least n /2 - k pebbles. This follows

On Time Versus Space 335

from the fact that a vertex requiring n pebbles must have an ancestor which requires at
least n - k pebbles. Thus G~ must have at least Re(n~2 - k) edges.

Now either I A I -> n / 4 , in which case Rk(n) --> 2Re(n/2 - k) + n / 4 , or else I A } < n / 4 .
In the lat ter case pebbles can be placed simultaneously on all vertices of V~ which are
tails of edges in A using at most 3n /4 pebbles in the process. Leavmg n / 4 pebbles on
these vertices, we have 3n/4 pebbles free after this has been accomphshed. Thus G~ must
require 3n/4 pebbles, for otherwise G would not require n pebbles. Now a graph which
requires 3n /4 pebbles must have a subgraph with at least (1 / k) n / 4 fewer edges which
requires at least n / 2 pebbles. (To see this, note that the graph must have a vertex v of
outdegree 0 which requires 3n/4 pebbles. Vertex v must have an ancestor which requires
at least 3n /4 - k pebbles. Thus we can delete v and the edges into v. The resulting graph
still requires at least 3n /4 - k pebbles. Repeat ing the process (1 / k) n / 4 t imes, we obtain
a subgraph with at least (1 / k) n / 4 fewer edges which requires at least n / 2 pebbles.)

Thus in both cases Rk(n) --> 2Rk(n/2 -- k) + (I lk)n~4. Solving this recurrence gives
Rk(n) --> cn log n for some constant c This proof was inspired by [9]. []

Recently it has been shown by Paul, Tarjan, and Celoni (personal communication)
that P~(n) -> c n / l o g n for some constant c, and hence Lemma 1 is optimal. This improves
on an earlier bound of c x / n given by Cook [2].

LEMMA 2. D T I M E (t) C_ N S P A C E (t / l o g t).
PROOF. Let M be a t log t t ime bounded deterministic k- tape Turing machine. We

construct a nondeterministic machine M' which simulates M in space t.
Make M block respecting and guess a sequence of states q' and a sequence of head

positions h ' , as opposed to the correct sequences q and h. Each such sequence has length
at most t ~/3. It requires space t ~/a to write down q ' and space tl/alog t to write down h ' .
From h ' construct a graph G as described earlier. G has t ~ja vertices and requires space
t~t31og t to write down.

By Lemma 1 there is a strategy to move a pebble to the output node of G by never
using more than t~/3/log t pebbles. We can assume that this strategy has at most ~ = 2 t'~3
moves because there are only z patterns of pebbles on G and there is no sense in
repeating a pattern in a strategy. Having guessed the sequences q ' and h ' , we can have
M' simulate M as follows:

begin
for x = step 1 until r do
begin

nondetermmtsttcally guess x-th move of above strategy,
if x-th move places pebble on v(A) then
begin

compute and store q(,~), h(A), and c(~),
if q(A) -~ q'(A) or h(A) ~ h'(A) then reject,
if space used ts greater than or equal to t then relect,

end else if x-th move removes pebble from v(,~) then erase q(A), h(~), and c(,~) from the working tape;
end
if after stage z stmulatzon ts not complete then relect

end

The essential feature of this simulation is that after stage x, M' has computed and
stored {c(A) { vertex v(A) has a pebble after the xth move}. By (2.2) storingc(A) for one
takes space O(f/3). Thus if M ' happens to guess a strategy which uses at most O (t~/a/log t)
pebbles at a t~me (by Lemma 1 such a strategy always exists), the simulation can indeed
be carried out in space O (t / log t), in which case M ' accepts iff the last component of q '
is the accepting state of M.

The global correctness of the above simulation is proved by induction on x and follows
from (2.1), (2.2), the construction of G, and the rules of the pebble game. A small but
important point is that there are the edges v(A - 1) --~ v(A). This guarantees that the time
segment A of the computat ion of M cannot be simulated until it has been verified that

3 3 6 J. HOPCROFT, W. PAUL, AND L. VALIANT

q(1) q (~ - 1) and h(1) , h(A - 1) had been guessed correctly. The details of
the correctness proof are left to the reader.

A t this point the reader should be familiar with all the important ideas. We now
explain how to make the simulation deterministic. There are two nondeterminist ic steps
in the simulation algorithm. Guessing the sequences q ' and h ' can be replaced by cycling
through all possible such sequences.

In order to determine the next move in the strategy which moves the pebbles, first
construct a nondeterminist ic machine which, given a description of G, a pat tern D of
pebbles on G, and a number x between 1 and 2 dl3 (each of which can be written down in
space ti/310g t or less), prints out the first move in a strategy which, starting from D,
moves a pebble on the output vertex of G never using more than O(tl/alog t) pebbles and
making at most 2t"310g t - x moves, provided such a strategy exists.

This machine can be constructed in a straightforward way using space O(tl/31og t).
Using techniques from [10], one can make it deterministic in space O(t~J310g2t). Using
this machine during the simulation as a submachine, one can always from the achieved
pat tern of pebbles and from x deterministically find the next move in the right strategy.
Thus we have shown

THEOREM 1. I f t tS tape constructable, then DTIME(t) C_ DSPACE(t/ log t).
Some easy corollaries of this have been stated in the Introduction. In addi tmn one can

show
COROLLARY 1. For all t: DTIME(t) C DSPACE(t/Iog t).
PROOV. Instead of precomputing t, successively try simulation of the proof of Theo-

rem 1 for t(n) = 1, 2, 3, . . untd you can carry out the simulation.
COROLLARY 2. I f t(n) and 8(n) are constructable on tape t(n) and lira 8(n) = % then

DTIME(t(n)) ts properly contained m the class o f sets recognizable in time 8(n)t(n)log t(n)
on space t(n).

PROOV. Instead of blocksize t 213, choose blocksize t/(log 8) ~12 so that the number of
blocks, and hence the size of the graph, is (log 6)1/% Then the total number of graphs is
bounded by 8 ~n, allowing us to cycle through all graphs contributing at most a multiplica-
tive time factor of 81/2. For a fixed graph we can construct a pebbling strategy in time 8.
(There are at most 2 C~°~ 8)~ configurations of pebbles, and hence nondetermimstic space
(log 8) i/z is sufficient. By Savitch's construction [10] determimstic space log 8 and hence
deterministic time 8 is sufficient.) Given a graph and a pebbhng strategy, simulation
requires t ime equal to the product of the number of pebble moves and t/log 8 or
(8)u2t/log 8. Therefore the total t ime is bounded by 6 ~j2 [8 + 8J/at/log 6] or 6(n)t(n) . Thus
each k- tape machine of t~me complexity t can be simulated by a (k + 1)-tape machine of
time complexity less than ~ (n) t (n) and tape complexity O (t / log log 8). Now an appeal to
[5] yields the desired result.

It is an interesting open problem whether NTIME(t) C NSPACE(t / Iog t). The diffi-
culty here is that in going back and repeat ing a port ion of a computat ion we cannot be
sure that the same sequence of choices is made the second time.

3. A n Application o f Lemma 1

A stratght-line program o f length n is a sequence of n assignment statements of the form

X1 ~"-f l (Yll Ylk),

x , +--A (Ym, . . ,Ynk),

where the x, and y~ are (not necessardy distinct) variables and the f, are (not necessarily
distinct) k-ary operations. Those variables which never appear on the left-band side of an
assignment are called input vartables.

Let us assume that each value for a variable occurring during the execution of the
straight-line program can be stored in one register and that, given y,~ through Y,k,

On Time Versus Space 337

f(Y,l y,~) can be computed using a fixed number of registers. Holding k fixed, we
can ask how many auxiliary cells, i .e. cells other than those which contain the values of
the input variables, are needed to execute a straight-line program of length n. We claim
that O(n/log n) auxdiary cells are sufficient. This can be seen as follows: Modify the pro-
gram so that no variable appears twice on the left-hand side of an assignment, thereby
possibly increasing the number of distinct variables used. Construct a graph G as follows:
The vertices of G are the distinct variables of the modified program. There is an edge
v~ ~ v2 iff in one line v~ occurs on the left-hand side and v~ appears on the right-hand
side. G is directed, is acyclic, has fan in k, and has at most kn vertices and edges.

By Lemma 1 there exists a pebble strategy for G using at most O(n/log n) pebbles,
which induces an evaluation strategy for the straight-line program in an obvious way.
(Unfortunately this strategy may be rather time consuming)

This result stands in perfect analogy to the fact that each formula of length n can be
evaluated with O(log n) auxiliary cells because each k-ary tree with n leaves can be
pebbled with O(log n) pebbles.

R E F E R E N C E S

(Note. References ll, 3, 4, 6, 8] are not cited m the text)

1 Atto, A . V , HOPCROVr, J .E. , AND ULLMAN, J D. The Design and Analysis o f Computer Algorithms
Addison-Wesley, Reading, Mass , 1974

2 CooK. S A An observation of nine-storage trade-off Proc. Fifth Annual ACM Syrup. on Theory of
C o m p u t , 1973, pp. 29-33

3 HARTMANIS, J , AND STEARNS, R E On the computational complexity of algorithms. Trans. Amer
Math Soc 117 (1965), 285-306

4 HENNIE, F.C On-hne Turlng machine computations 1EEE Trans. Electronic Computers EC-15
(1966), 35-44

5 HENNIE, F C , AND STEARNS, R E Two-tape simulation of multitape Turmg machines. J A C M 13, 4
(Oct 1966), 533-546

6 HOPCROFT, J E , AND ULLMAN, J D Some results on tape-bounded Turlng machines. J A C M 16, 1
(Jan 1969) ,168-177

7 HOPCRO~, J E , AND ULLMAN, J D Formal Languages and Their Relatton to Automata. Addison-
Wesley, Reading, Mass , 1969

8 PATERSON, M S Tape bounds for time-bounded Turmg machines. J Computer System Sct. 6 (1972),
116-124

9 PATERSON, M S , ANO VALIANT, L G Ctrcuit size is nonhnear in depth Theory of Comput. Rep. 8, U
of Warwick. Coventry, England, 1975, to appear m Theoretical Computer Scl

10 SAvrrcrt, W J Relationships between nondetermlmstic and deterministic tape complexltleg. J. Com-
puter System Sct 4, 2 (1970), 117-192

] 1. STEARNS, R E , HARTMANIS, J , AND LEWIS, P M Hierarchies of memory hmited computat ions Proc
Sixth I E E E Syrup. on Switching and Automata Theory, 1965, pp. 191-202.

RECEIVED NOVEMnER 1975, REVISED ~AV 1976

Journal of the Assoclatlon for Computing Machinery, Vol 24, No 2. April 1977

