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1. Introduction 

The  main  result  of  this pape r  is to set t le  m the aff i rmat ive  the fundamenta l  ques t ion  as to 
whe the r  space is strictly m o r e  powerfu l  than  t ime as a resource  for de terminis t ic  
mul t i tape  Tur ing  machines .  We  estabhsh for  all funct ions t(n) that  the class of  sets 
accepted  in t ime t(n) is con ta ined  with the class of  sets accepted  m space t(n)/log t(n). This  
implies  by the s tandard  d lagonal iza t ion  a rguments  [11] that  for funct ions  t(n) and 6(n) 
which are  both  const ructable  on tape t(n) the  class of  sets accepted  in h m e  t(n) is p roper ly  
con ta ined  in the class of  sets accepted  in space 8(n)t(n)/log t(n) prov ided  inf 8(n) ~ ~ .  

O n e  consequence  of  the above  result  is that  the context -sens i twe languages  cannot  be 
recognized  in l inear  t ime on a determinis t ic  mul t i tape  Tur ing  machine .  In fact there  
exists a determinis t ic  context-sensi t ive  language which cannot  be  recognized  in t ime 
(n log n ) /A - l (n )  on  a de terminis t ic  mul t i t ape  Tur ing  machine ,  where  A - l ( n )  Is the  in- 
verse  of  A c k e r m a n n ' s  funct ion.  

2. Efficwnt Space Simulation o f  Time Bounded Turing Machines 

Let  DTIME(t(n) )  (NTIME(t(n)))  be the class of  sets accepted  by de te rmimst ic  (nonde te r -  
minist ic)  mul t i tape  T u r m g  machines  of  t ime complexi ty  t(n). Le t  DSPACE(s(n)) 
(NSPACE(s(t i )))  be  the  class of  sets accepted  by determinis t ic  (nondeterminis t ic )  multi-  
tape Tur ing  machines  of  space complexi ty  s(n). 
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We present an algorithm for simulating a deterministic multitape Turing machine of 
time complexity t by a deterministic Turing machine of space complexity t / log t. For ease 
in understanding the construction involved we first present a nondeterministic simula- 
tion. 

Partition each tape into blocks of size t z/a. Next modify the time bounded Turmg 
machine so that it is block respecting; that is, tape heads will cross boundaries between 
blocks only at times which are integer multiples of t z/a. The modified Turing machine 
must be so constructed so that it runs slower by at most a constant factor c. To do this 
block boundaries are marked on the tapes. An additional tape ~s added with one block 
marked on it. The head on this new tape simply moves back and forth over the block and 
serves as a clock to indicate multiples of t 2/3 units of time. If either head on one of the 
original tapes attempts to cross a block boundary at a time other than a multiple of t z~z, 
the simulation temporarily halts until the clock tape indicates the next multiple. 

A difficulty arises in that a tape head may simply move back and forth between two 
adjacent tape cells which are in different blocks. In this case the simulation would be 
slower by a factor of t 2ts. This difficulty is overcome as follows. Let 

be an inscription of the j th  tape of the original Turing machine after mt 213 steps where 
I w, I = tz/a- Then the corresponding inscription for the block respecting Turing machine 
after cmt 2Is steps is 

w1 

w~ 

wl 

w2 

w~ 

w~ 

W3 

w~ 

Wr 

where w r stands for w reversed. The extra tracks are used to guarantee that t  2/s moves can 
be simulated without crossing a block boundary. After t zja such moves of actual simula- 
tion, the next (c - 1)t 2/a moves are used to update the tapes of the block respecting 
machine. The details of the simulation and of marking the block boundaries are left to 
the reader. (For help, consult the proof of Theorem 10.3 in [7].) 

Without loss of generality, let M be a block respecting deterministic k-tape Turing 
machine of time complexity t and let w be an input for M. Divide the computation of M 
on input w into time segments. Each segment A corresponds to a time period of length 
t 2~3. Note that a tape head can cross a boundary only at the end of a segment. Since the 
original Turing machine makes at most t moves and there are always t 2t3 moves between 
crossings of block boundaries, there are at most t 1/a time segments A. 

Let h(i, A) be the position of the tape head on the tth tape of M after time segment A. 
Let h(A) = [h(1, A) . . . . .  h(k, A)] and let h = [h(1) . . . . .  h(p/a)]. From the sequence of 
head positions h, we construct a directed graph G with a vertex corresponding to each 
time segment of the computation. Let v(A) be the vertex corresponding to time segment 
A. For each tape i, let A~ be the last time segment prior to A such that the ith head was 
scanning the same block during the segment A, as during the segment A. The edges of G 
are v(A - 1) --~ v(A) and, for 1 _< i -< k, v(A,) ~ v(A). Because there are only t t/s time 
segments A, the above graph has at most t 1/a vertices. To write down a description of the 
graph requires space on the order of (k + 1) t ~/a log t since approximately log t bits are 
needed to specify each edge. 

Let c(i, A) be the content after time segment A of that block on the ith tape of M 
scanned by the tape head durmg the time segment A. Let c(A) = [c(1, A), . . .  , c(k, A)]. 
Letf(A) be the initial contents of those blocks which are visited by M for the first time 
during the time segment A. With each vertex v(A) in G we can associate the information 
c(A) and f(A). 
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Let q(&) be the state of M after time segment A and let q = [ q ( 1 ) , . . . ,  q(t113)]. In order  
to determine the outcome of the original computat ion of M,  we need only determine the 
state q(A) after the final time segment A. 

Suppose we have guessed the sequence of head positions h and the sequence of states 
q. We want them to simulate M without using too much space and to verify that we 
guessed h and q correctly. Because M is deterministic and block respecting, the following 
holds for any A: 

(2.1) q(A), h(A), and c(A) can be uniquely determined f romq(A - 1), h(A - I) ,  c(A1), 
. .  • , c(Ak), and f(A) by direct simulation of t ime segment A. The simulation reqmres 
space to store the contents of k blocks or O(kt2/3). 

(2.2) To store c(A) requires space 0(kt213). 

f(A), q(A - 1), and h(A - 1) can be determined from the guessed sequences q and h,  and 
the edges into vertex v(A) in the graph G give us the vertices associated with c ( A 1 ) , . . .  , 
c(Ak). This suggests several strategies to simulate M. Our  strategy will be first to 
determine c(1),  then c(2),  c(3),  and so on. 

Now observe that in order  to carry out the whole simulation we need not  keep in 
memory the contents of the blocks corresponding to all vertices since we can go back and 
reconstruct certain blocks whenever we need them. The question is what is the minimum 
number of blocks one must store at any one time in order  to carry out the simulation. To 
answer this question we study a game on graphs. 

Let  Gk be the set of all finite directed acydic  graphs with indegree at most k. Vertices 
with indegree 0 are called input vertices. The game consists in placing pebbles  on the 
vertices of such a graph G according to the following rules: 

(1) A pebble can always be placed on an input vertex. 
(2) If all fathers of  a vertex v have pebbles,  then a pebble can be placed on vertex v. 
(3) A pebble can be removed at any time. 
The goal of the game is to eventually place a pebble on a particular vertex v, 

designated in advance, by a scheme which minimizes the maximum number of pebbles  
simultaneously on the graph at any instance of time. Let  Pk(n) be the maximum over all 
graphs in G k with n vertices of the number  of pebbles required to place a pebble on an 
arbitrary vertex of such a graph. We will show that for each k, Pk(n) is O(n/log n). 

LEMMA I.  For each k, Pk(n) is O(n/log n). 
PROOF. For  convenience let Rk(n) be the minimum number of edges of any graph in 

Gk which requires n pebbles.  Showing that Rk(n) --> cn log n for some c is equivalent to 
proving that Pk(n) JS O(n/ log n). 

Let 
G = (V, E) be a graph m Gk with Rk(n) edges which requires n pebbles,  
V~ = the set of vertices of G to which a pebble can be moved us ingn/2  or fewer pebbles,  
V2= V -  V ,  
E 1  = { ( u  ~ v)/(u --> v) ~ E,  u, v ~ V1}, 
E2 = {(u --> v)/(u --> v) ~ E,  u, v ~ Vz}, 
G~ = (V~, E~) and Gz = (Vz, Ez). 

A = E - (El t.I E2), that is, A is the set of edges from vertices in Va to vertices in V2. 
We claim that there exists a vertex in G2 which requires n /2  - k pebbles if the game is 

played on G2 only. Otherwise move a pebble to any vertex v of G with less than n pebbles  
by the following strategy. If v is in Vi, then only n /2  pebbles are needed.  Thus assume v 
is in V2. Move a pebble to v in G by using the strategy for G2. Whenever  we need to place 
a pebble on a vertex w of G2 which in G has a father in V1, move pebbles one at a time to 
each father of w in V1. Since w has at most k fathers in V~, at most n /2  + k pebbles  are 
ever placed on vertices in V~. As soon as a pebble is placed on w, remove all pebbles  
from vertices in V~. Hence at mos tn  - 1 pebbles are ever used, a contradiction. Thus G2 
must have at least Rk(n/2 - k) edges. 

Next observe that G~ has a vertex which requires at least n /2  - k pebbles.  This follows 
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from the fact that a vertex requiring n pebbles must have an ancestor which requires at 
least n - k pebbles.  Thus G~ must have at least Re(n~2 - k) edges. 

Now either I A I -> n / 4 ,  in which case Rk(n) --> 2Re(n/2  - k) + n / 4 ,  or else I A } < n / 4 .  
In the lat ter  case pebbles can be placed simultaneously on all vertices of V~ which are 
tails of edges in A using at most 3n /4  pebbles in the process. Leavmg n / 4  pebbles on 
these vertices, we have 3n/4 pebbles free after this has been accomphshed.  Thus G~ must 
require 3n/4  pebbles,  for otherwise G would not require n pebbles.  Now a graph which 
requires 3n /4  pebbles must have a subgraph with at least ( 1 / k ) n / 4  fewer edges which 
requires at least n / 2  pebbles.  (To see this, note that the graph must have a vertex v of 
outdegree 0 which requires 3n/4  pebbles.  Vertex v must have an ancestor which requires 
at least 3n /4  - k pebbles.  Thus we can delete v and the edges into v. The resulting graph 
still requires at least 3n /4  - k pebbles.  Repeat ing the process ( 1 / k ) n / 4  t imes, we obtain 
a subgraph with at least ( 1 / k ) n / 4  fewer edges which requires at least n / 2  pebbles.)  

Thus in both cases Rk(n) --> 2Rk(n/2  -- k) + ( I lk)n~4.  Solving this recurrence gives 
Rk(n)  --> cn log n for some constant c This proof  was inspired by [9]. [] 

Recently it has been shown by Paul, Tarjan,  and Celoni (personal communication) 
that P~(n) -> c n / l o g  n for some constant c, and hence Lemma 1 is optimal.  This improves 
on an earlier bound of c x / n  given by Cook [2]. 

LEMMA 2. D T I M E ( t )  C_ N S P A C E ( t / l o g  t). 
PROOF. Let M be a t log t t ime bounded deterministic k- tape Turing machine.  We 

construct a nondeterministic machine M'  which simulates M in space t. 
Make M block respecting and guess a sequence of states q'  and a sequence of  head 

positions h ' ,  as opposed to the correct sequences q and h. Each such sequence has length 
at most t ~/3. It requires space t ~/a to write down q '  and space tl/alog t to write down h ' .  
From h '  construct a graph G as described earlier.  G has t ~ja vertices and requires space 
t~t31og t to write down. 

By Lemma 1 there is a strategy to move a pebble to the output  node of G by never 
using more than t~/3/log t pebbles.  We can assume that this strategy has at most ~ = 2 t'~3 
moves because there are only z patterns of pebbles on G and there is no sense in 
repeating a pattern in a strategy. Having guessed the sequences q '  and h ' ,  we can have 
M'  simulate M as follows: 

begin 
for x = step 1 until r do 
begin 

nondetermmtsttcally guess x-th move of above strategy, 
if x-th move places pebble on v(A) then 
begin 

compute and store q(,~), h(A), and c(~), 
if q(A) -~ q'(A) or h(A) ~ h'(A) then reject, 
if space used ts greater than or equal to t then relect, 

end else if x-th move removes pebble from v(,~) then erase q(A), h(~), and c(,~) from the working tape; 
end 
if after stage z stmulatzon ts not complete then relect 

end 

The essential feature of this simulation is that after stage x,  M'  has computed  and 
stored {c(A) { vertex v(A) has a pebble after the xth move}. By (2.2) storingc(A) for one 
takes space O(f/3). Thus if M '  happens to guess a strategy which uses at most O (t~/a/log t) 
pebbles at a t~me (by Lemma 1 such a strategy always exists), the simulation can indeed 
be carried out in space O ( t / log  t), in which case M '  accepts iff the last component  of q '  
is the accepting state of M. 

The global correctness of the above simulation is proved by induction on x and follows 
from (2.1),  (2.2),  the construction of G,  and the rules of the pebble  game. A small but  
important  point is that there are the edges v(A - 1) --~ v(A). This guarantees that the time 
segment A of the computat ion of M cannot be simulated until it has been verified that 
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q(1) . . . . .  q (~  - 1) and h(1) . . . .  , h(A - 1) had been guessed correctly. The details of 
the correctness proof  are left to the reader.  

A t  this point the reader  should be familiar with all the important  ideas. We now 
explain how to make the simulation deterministic.  There are two nondeterminist ic steps 
in the simulation algorithm. Guessing the sequences q '  and h '  can be replaced by cycling 
through all possible such sequences. 

In order  to determine the next move in the strategy which moves the pebbles,  first 
construct a nondeterminist ic machine which, given a description of G,  a pat tern D of 
pebbles on G,  and a number  x between 1 and 2 dl3 (each of which can be written down in 
space ti/310g t or less), prints out the first move in a strategy which, starting from D,  
moves a pebble on the output  vertex of G never using more than O(tl/alog t) pebbles and 
making at most 2t"310g t - x moves,  provided such a strategy exists. 

This machine can be constructed in a straightforward way using space O(tl/31og t). 
Using techniques from [10], one can make it deterministic in space O(t~J310g2t). Using 
this machine during the simulation as a submachine,  one can always from the achieved 
pat tern of pebbles and from x deterministically find the next move in the right strategy. 
Thus we have shown 

THEOREM 1. I f  t tS tape constructable, then DTIME(t)  C_ DSPACE(t/ log t). 
Some easy corollaries of  this have been stated in the Introduction.  In addi tmn one can 

show 
COROLLARY 1. For all t: DTIME(t)  C DSPACE(t/Iog t). 
PROOV. Instead of precomputing t, successively try simulation of the proof of Theo- 

rem 1 for t(n) = 1, 2, 3, . .  untd you can carry out the simulation. 
COROLLARY 2. I f  t(n) and 8(n) are constructable on tape t(n) and lira 8(n) = % then 

DTIME(t(n)) ts properly contained m the class o f  sets recognizable in time 8(n)t(n)log t(n) 
on space t(n). 

PROOV. Instead of blocksize t 213, choose blocksize t/(log 8) ~12 so that  the number  of 
blocks, and hence the size of the graph,  is (log 6)1/% Then the total number  of graphs is 
bounded by 8 ~n, allowing us to cycle through all graphs contributing at most a multiplica- 
tive time factor of 81/2. For  a fixed graph we can construct a pebbling strategy in time 8. 
(There are at most 2 C~°~ 8)~ configurations of pebbles,  and hence nondetermimstic  space 
(log 8) i/z is sufficient. By Savitch's construction [10] determimstic space log 8 and hence 
deterministic time 8 is sufficient.) Given a graph and a pebbhng strategy, simulation 
requires t ime equal to the product  of the number  of pebble  moves and t/log 8 or 
(8)u2t/log 8. Therefore the total t ime is bounded by 6 ~j2 [8 + 8J/at/log 6] or 6(n)t(n) .  Thus 
each k- tape machine of t~me complexity t can be simulated by a (k + 1)-tape machine of 
time complexity less than ~ (n) t  (n)  and tape complexity O (t / log log 8 ). Now an appeal  to 
[5] yields the desired result.  

It  is an interesting open problem whether NTIME(t) C NSPACE(t / Iog t). The diffi- 
culty here is that in going back and repeat ing a port ion of a computat ion we cannot be 
sure that the same sequence of choices is made the second time. 

3. A n  Application o f  Lemma 1 

A stratght-line program o f  length n is a sequence of n assignment statements of the form 

X1 ~"-f l  (Yll . . . . .  Ylk), 

x ,  +--A (Ym, .  . ,Ynk), 

where the x, and y~ are (not necessardy distinct) variables and the f, are (not necessarily 
distinct) k-ary  operations.  Those variables which never appear  on the left-band side of an 
assignment are called input vartables. 

Let us assume that each value for a variable occurring during the execution of the 
straight-line program can be stored in one register and that,  given y,~ through Y,k, 
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f(Y,l . . . . .  y,~) can be computed using a fixed number of registers. Holding k fixed, we 
can ask how many auxiliary cells, i .e.  cells other than those which contain the values of 
the input variables, are needed to execute a straight-line program of length n. We claim 
that O(n/log n) auxdiary cells are sufficient. This can be seen as follows: Modify the pro- 
gram so that no variable appears twice on the left-hand side of an assignment, thereby 
possibly increasing the number of distinct variables used. Construct a graph G as follows: 
The vertices of G are the distinct variables of the modified program. There is an edge 
v~ ~ v2 iff in one line v~ occurs on the left-hand side and v~ appears on the right-hand 
side. G is directed, is acyclic, has fan in k,  and has at most kn vertices and edges. 

By Lemma 1 there exists a pebble strategy for G using at most O(n/log n) pebbles, 
which induces an evaluation strategy for the straight-line program in an obvious way. 
(Unfortunately this strategy may be rather time consuming ) 

This result stands in perfect analogy to the fact that each formula of length n can be 
evaluated with O(log n)  auxiliary cells because each k-ary tree with n leaves can be 
pebbled with O(log n) pebbles. 
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